Mining of Cell Assay Images Using Active Semi-Supervised Clustering
نویسندگان
چکیده
Classifying large datasets without any a-priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a highthroughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. We deal with three major requirements: first, the model should be easy to understand, second it should offer the possibility to be adjusted by a domain expert, and third the interaction with the user should be kept to a minimum. We propose a new active clustering scheme, based on an initial Fuzzy c-means clustering and Learning Vector Quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Furthermore, we introduce a framework for the classification of cell assay images based on this technique. Early experiments show promising results.
منابع مشابه
Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملAn Efficient Learning of Constraints For Semi-Supervised Clustering using Neighbour Clustering Algorithm
Data mining is the process of finding the previously unknown and potentially interesting patterns and relation in database. Data mining is the step in the knowledge discovery in database process (KDD) .The structures that are the outcome of the data mining process must meet certain condition so that these can be considered as knowledge. These conditions are validity, understandability, utility,...
متن کامل